File: /var/www/agighana.org_backup/Montgomery.php
<?php
/**
* PHP Montgomery Modular Exponentiation Engine
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace Google\Site_Kit_Dependencies\phpseclib3\Math\BigInteger\Engines\PHP\Reductions;
use Google\Site_Kit_Dependencies\phpseclib3\Math\BigInteger\Engines\PHP\Montgomery as Progenitor;
/**
* PHP Montgomery Modular Exponentiation Engine
*
* @author Jim Wigginton <terrafrost@php.net>
*/
abstract class Montgomery extends \Google\Site_Kit_Dependencies\phpseclib3\Math\BigInteger\Engines\PHP\Montgomery
{
/**
* Prepare a number for use in Montgomery Modular Reductions
*
* @param array $x
* @param array $n
* @param string $class
* @return array
*/
protected static function prepareReduce(array $x, array $n, $class)
{
$lhs = new $class();
$lhs->value = \array_merge(self::array_repeat(0, \count($n)), $x);
$rhs = new $class();
$rhs->value = $n;
list(, $temp) = $lhs->divide($rhs);
return $temp->value;
}
/**
* Montgomery Multiply
*
* Interleaves the montgomery reduction and long multiplication algorithms together as described in
* {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 HAC 14.36}
*
* @param array $x
* @param array $n
* @param string $class
* @return array
*/
protected static function reduce(array $x, array $n, $class)
{
static $cache = [self::VARIABLE => [], self::DATA => []];
if (($key = \array_search($n, $cache[self::VARIABLE])) === \false) {
$key = \count($cache[self::VARIABLE]);
$cache[self::VARIABLE][] = $x;
$cache[self::DATA][] = self::modInverse67108864($n, $class);
}
$k = \count($n);
$result = [self::VALUE => $x];
for ($i = 0; $i < $k; ++$i) {
$temp = $result[self::VALUE][$i] * $cache[self::DATA][$key];
$temp = $temp - $class::BASE_FULL * ($class::BASE === 26 ? \intval($temp / 0x4000000) : $temp >> 31);
$temp = $class::regularMultiply([$temp], $n);
$temp = \array_merge(self::array_repeat(0, $i), $temp);
$result = $class::addHelper($result[self::VALUE], \false, $temp, \false);
}
$result[self::VALUE] = \array_slice($result[self::VALUE], $k);
if (self::compareHelper($result, \false, $n, \false) >= 0) {
$result = $class::subtractHelper($result[self::VALUE], \false, $n, \false);
}
return $result[self::VALUE];
}
/**
* Modular Inverse of a number mod 2**26 (eg. 67108864)
*
* Based off of the bnpInvDigit function implemented and justified in the following URL:
*
* {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
*
* The following URL provides more info:
*
* {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
*
* As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For
* instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
* int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
* auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that
* the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the
* maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to
* 40 bits, which only 64-bit floating points will support.
*
* Thanks to Pedro Gimeno Fortea for input!
*
* @param array $x
* @param string $class
* @return int
*/
protected static function modInverse67108864(array $x, $class)
{
$x = -$x[0];
$result = $x & 0x3;
// x**-1 mod 2**2
$result = $result * (2 - $x * $result) & 0xf;
// x**-1 mod 2**4
$result = $result * (2 - ($x & 0xff) * $result) & 0xff;
// x**-1 mod 2**8
$result = $result * (2 - ($x & 0xffff) * $result & 0xffff) & 0xffff;
// x**-1 mod 2**16
$result = $class::BASE == 26 ? \fmod($result * (2 - \fmod($x * $result, $class::BASE_FULL)), $class::BASE_FULL) : $result * (2 - $x * $result % $class::BASE_FULL) % $class::BASE_FULL;
return $result & $class::MAX_DIGIT;
}
}